Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This study sought to better understand how time of day (ToD) or turgor pressure might affect the flexural stiffness of sweet sorghum stalks and potentially regulate stalk lodging resistance. Stalk flexural stiffness measured across a 48 h period in 2019 showed a significant diurnal association with leaf water potential and stalk flexural stiffness. While the correlation between stalk flexural stiffness and this proxy for internal turgor status was statistically significant, it only accounted for roughly 2% of the overall variance in stiffness. Given that turgor status is a dynamic rather than fixed physiological variable like the cellular structure, these data suggest that internal turgor plays a small yet significant role in influencing the flexural stiffness of fully mature stalks prior to a stalk lodging event. The association was assessed at earlier developmental stages across three distinct cultivars and found not to be significant. Panicle weight and stalk basal weight, but not stalk Brix or water content, were found to be better predictors of stalk flexural stiffness than either ToD or turgor status. Observation across three cultivars and four distinct developmental stages ranging from the vegetative to the hard-dough stages suggests that stalk flexural stiffness changes significantly as a function of time. However, neither ToD nor turgor status appear to meaningfully contribute to observed variations in stalk flexural stiffness in either individual stalks or across larger populations. As turgor status was not found to meaningfully influence stalk strength or flexural stiffness at any developmental time point examined in any of the three sweet sorghum cultivars under study, turgor pressure likely offers only inconsequential contributions to the biomechanics underlying sweet sorghum stalk lodging resistance.more » « less
- 
            Summary White oak (Quercus alba) is an abundant forest tree species across eastern North America that is ecologically, culturally, and economically important.We report the first haplotype‐resolved chromosome‐scale genome assembly ofQ. albaand conduct comparative analyses of genome structure and gene content against other published Fagaceae genomes. We investigate the genetic diversity of this widespread species and the phylogenetic relationships among oaks using whole genome data.Despite strongly conserved chromosome synteny and genome size acrossQuercus, certain gene families have undergone rapid changes in size, including defense genes. Unbiased annotation of resistance (R) genes across oaks revealed that the overall number of R genes is similar across species – as are the chromosomal locations of R gene clusters – but, gene number within clusters is more labile. We found thatQ. albahas high genetic diversity, much of which predates its divergence from other oaks and likely impacts divergence time estimations. Our phylogenetic results highlight widespread phylogenetic discordance across the genus.The white oak genome represents a major new resource for studying genome diversity and evolution inQuercus. Additionally, we show that unbiased gene annotation is key to accurately assessing R gene evolution inQuercus.more » « less
- 
            Abstract Here, we present a study into the mechanisms of primary cell wall cellulose formation in grasses, using the model cereal grass Brachypodium distachyon. The exon found adjacent to the BdCESA1 glycosyltransferase QXXRW motif was targeted using Targeting Induced Local Lesions in Genomes (TILLING) and sequencing candidate amplicons in multiple parallel reactions (SCAMPRing) leading to the identification of the Bdcesa1S830N allele. Plants carrying this missense mutation exhibited a significant reduction in crystalline cellulose content in tissues that rely on the primary cell wall for biomechanical support. However, Bdcesa1S830N plants failed to exhibit the predicted reduction in plant height. In a mechanism unavailable to eudicotyledons, B. distachyon plants homozygous for the Bdcesa1S830N allele appear to overcome the loss of internode expansion anatomically by increasing the number of nodes along the stem. Stem biomechanics were resultantly compromised in Bdcesa1S830N. The Bdcesa1S830N missense mutation did not interfere with BdCESA1 gene expression. However, molecular dynamic simulations of the CELLULOSE SYNTHASE A (CESA) structure with modelled membrane interactions illustrated that Bdcesa1S830N exhibited structural changes in the translated gene product responsible for reduced cellulose biosynthesis. Molecular dynamic simulations showed that substituting S830N resulted in a stabilizing shift in the flexibility of the class specific region arm of the core catalytic domain of CESA, revealing the importance of this motion to protein function.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
